MoHPBGA: Multiobjective Hierarchical Population Balanced Genetic Algorithm using MapReduce

نویسندگان

  • Poka Laxmi
  • Jayant Umale
  • Sunita Mahajan
  • Bart Ian Rylander
  • Chao Jin
  • Christian Vecchiola
  • Rajkumar Buyya
  • Erick Cantu-Paz
  • David E. Goldberg
چکیده

Use of heuristic methods is common to find the solutions to the optimization problems for scientific and real time. Problems such as Travelling Salesman (TSP) require more accurate solution which is tried by various optimization methods. Research in this direction shows the use of Genetic algorithms (GA) as promising candidate and is preferred over other optimization methods. Firstly due to the use of large population and secondly large number of iterations GA tends to be more accurate but inefficient with respect to computation time. Variants of GA are formulated and experimented so as to take care of execution time. We present the review of approaches used to formulation of GA solutions mainly parallel GA (PGA), distributed GA (DGA) and hierarchical parallel GA (HPGA). Further this paper proposes Multi objective Hierarchical Population Balanced Genetic Algorithm (MoHPBGA) as the improved candidate which uses map reduce framework for efficient use of population mapping and synchronization of tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical evolutionary algorithm for multiobjective optimization in IMRT.

PURPOSE The current inverse planning methods for intensity modulated radiation therapy (IMRT) are limited because they are not designed to explore the trade-offs between the competing objectives of tumor and normal tissues. The goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pa...

متن کامل

Multiobjective Hboa, Clustering, and Scalability Multiobjective Hboa, Clustering, and Scalability

This paper describes a scalable algorithm for solving multiobjective decomposable problems by combining the hierarchical Bayesian optimization algorithm (hBOA) with the nondominated sorting genetic algorithm (NSGA-II) and clustering in the objective space. It is first argued that for good scalability, clustering or some other form of niching in the objective space is necessary and the size of e...

متن کامل

Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy

In this paper, we present a novel approach to partitioning pattern spaces using a multiobjective genetic algorithm for identifying (near-)optimal subspaces for hierarchical learning. Our approach of "learning-follows-decomposition" is a generic solution to complex high-dimensional problems where the input space is partitioned prior to the hierarchical neural domain instead of by competitive lea...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Monitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach

The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012